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Abstract  
 
Images require substantial storage and transmission resources, thus image compression is advantageous 
to reduce these requirements. The report covers some background of wavelet analysis, data compression 
and how wavelets have been and can be used for image compression. An investigation into the process 
and problems involved with image compression was made and the results of this investigation are 
discussed.  It was discovered that thresholding was had an extremely important influence of 
compression results so suggested thresholding strategies are given along with further lines of research 
that could be undertaken.  
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1. Introduction  
 
Often signals we wish to process are in the time-domain, but in order to process them more easily other 
information, such as frequency, is required. Mathematical transforms translate the information of signals 
into different representations.  For example, the Fourier transform converts a signal between the time 
and frequency domains, such that the frequencies of a signal can be seen. However the Fourier 
transform cannot provide information on which frequencies occur at specific times in the signal as time 
and frequency are viewed independently. To solve this problem the Short Term Fourier Transform 
(STFT) introduced the idea of windows through which different parts of a signal are viewed.  For a 
given window in time the frequencies can be viewed.  However Heisenburg�s Uncertainty Principle 
states that as the resolution of the signal improves in the time domain, by zooming on different sections, 
the frequency resolution gets worse.  Ideally, a method of multiresolution is needed, which allows 
certain parts of the signal to be resolved well in time, and other parts to be resolved well in frequency.  
The power and magic of wavelet analysis is exactly this multiresolution.  
 
Images contain large amounts of information that requires much storage space, large transmission 
bandwidths and long transmission times. Therefore it is advantageous to compress the image by storing 
only the essential information needed to reconstruct the image.  An image can be thought of as a matrix 
of pixel (or intensity) values. In order to compress the image, redundancies must be exploited, for 
example, areas where there is little or no change between pixel values.  Therefore images having large 
areas of uniform colour will have large redundancies, and conversely images that have frequent and 
large changes in colour will be less redundant and harder to compress. 
 
Wavelet analysis can be used to divide the information of an image into approximation and detail 
subsignals. The approximation subsignal shows the general trend of pixel values, and three detail 
subsignals show the vertical, horizontal and diagonal details or changes in the image. If these details are 
very small then they can be set to zero without significantly changing the image. The value below which 
details are considered small enough to be set to zero is known as the threshold. The greater the number 
of zeros the greater the compression that can be achieved.   The amount of information retained by an 
image after compression and decompression is known as the �energy retained� and this is proportional to 
the sum of the squares of the pixel values.  If the energy retained is 100% then the compression  is 
known as �lossless�, as the image can be reconstructed exactly.  This occurs when the threshold value is 
set to zero, meaning that the detail has not been changed.  If any values are changed then energy will be 
lost and this is known as �lossy� compression.  Ideally, during compression the number of zeros and the 
energy retention will be as high as possible. However, as more zeros are obtained more energy is lost, so 
a balance between the two needs to be found.   
      
The first part of the report introduces the background of wavelets and compression in more detail. This 
is followed by a review of a practical investigation into how compression can be achieved with wavelets 
and the results obtained. The purpose of the investigation was to find the effect of the decomposition 
level, wavelet and image on the number of zeros and energy retention that could be achieved.    For 
reasons of time, the set of images, wavelets and levels investigated was kept small. Therefore only one 
family of wavelets, the Daubechies wavelets, was used. The images used in the investigation  can be 
seen in Appendix B. The final part of the report discusses image properties and thresholding, two issues 
which have been found to be of great importance in compression. 
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x is the original signal 
t is time 
f is frequency   
X is the Fourier transform. 

2. Background 
 

2.1. The Need for Wavelets 
 
Often signals we wish to process are in the time-domain, but in order to process them more easily other 
information, such as frequency, is required.  A good analogy for this idea is given by Hubbard[4], p14.  
The analogy cites the problem of multiplying two roman numerals. In order to do this calculation we 
would find it easier to first translate the numerals in to our number system, and then translate the answer 
back into a roman numeral.  The result is the same, but taking the detour into an alternative number 
system made the process easier and quicker.  Similarly we can take a detour into frequency space to 
analysis or process a signal.   
 
 
2.1.1 Fourier Transforms (FT)  
 
Fourier transforms can be used to translate time domain signals into the frequency domain. Taking 
another analogy from Hubbard[4] it acts as a mathematical prism, breaking up the time signal into 
frequencies, as a prism breaks light into different colours.  
 
 

 
 

Figure 2.1  The left graph shows a signal plotted in the time domain, the right graph shows the  Fourier 
transform of the signal.  

 
 
The following equations can be used to calculate the Fourier transform of a time-domain signal and the 
inverse Fourier Transform [2]: 
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Fourier transforms are very useful at providing frequency information that cannot be seen easily in the 
time domain. However they do not suit brief signals, signals that change suddenly, or in fact any non-
stationary signals.  The reason is that they show only what frequencies occur, not when these 
frequencies occur, so they are not much help when both time and frequency information is required 
simultaneously. In stationary signals, all frequency components occur at all times, so Fourier 
Transforms are very useful.  Hubbard[4] helps to make this idea clearer by using the analogy of a 
musician; if a musician were told what notes were played during a song, but not any information about 
when to play them, he would find it difficult to make sense of the information.  Luckily he has the tool 
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of a music score to help him, and in a parallel with this the mathematicians first tried to use the Short 
Term Fourier Transform (STFT), which was introduced by Gabor.   
 
The STFT looks at a signal through a small window, using the idea that a sufficiently small section of 
the wave will be approximately a stationary wave and so Fourier analysis can be used.  The window is 
moved over the entire wave, providing some information about what frequencies appear at what time.  
 
 
 
 

 
Figure 2.2 Example of a window used for STFT 

 
 
 
The following equation can be used to compute a STFT. It is different to the FT as it is computed for 
particular windows in time individually, rather than computing overall time (which can be alternatively 
thought of as an infinitely large window). x is the signal, and w is the window.  
 
 

∫ Π−−= tettwtxftSTFT ftjw
x δ2)].'(*).([),(           [2]              

 
 
This is an improvement as a time domain signal can be mapped onto a function of time and frequency, 
providing some information about what frequencies occur when.   However using windows introduces a 
new problem; according to Heisenberg's Uncertainty principle it is impossible to know exactly what 
frequencies occur at what time, only a range of frequencies can be found. This means that trying to gain 
more detailed frequency information causes the time information to become less specific and visa versa.  
Therefore when using the STFT, there has to be a sacrifice of either time or frequency information.  
Having a big window gives good frequency resolution but poor time resolution, small windows provide 
better time information, but poorer frequency information.  
 
 
 
2.1.2 Multiresolution and Wavelets 
 
The power of Wavelets comes from the use of multiresolution. Rather than examining entire signals 
through the same window, different parts of the wave are viewed through different size windows (or 
resolutions).  High frequency parts of the signal use a small window to give good time resolution, low 
frequency parts use a big window to get good frequency information.  
 
An important thing to note is that the 'windows' have equal area even though the height and width may 
vary in wavelet analysis.  The area of the window is controlled by  Heisenberg's Uncertainty principle, 
as frequency resolution gets bigger the time resolution must get smaller.  
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Figure 2.3  The different transforms provided different resolutions of time and frequency.   
 
 
In Fourier analysis a signal is broken up into sine and cosine waves of different frequencies, and it 
effectively re-writes a signal in terms of different sine and cosine  waves. Wavelet analysis does a 
similar thing, it takes a �mother wavelet�, then the signal is translated into shifted and scale versions of 
this mother wavelet.  
 
 
 
2.1.3 The Continuous Wavelet Transform (CWT) 
 
The continuous wavelet transform is the sum over all time of scaled and shifted versions of the mother 
wavelet ψ.   Calculating the CWT results in many coefficients C, which are functions of scale and 
translation.  
 

dttstfsC .),,()(),( ∫
∞

∞−

= τψτ  

 
The translation, τ,  is proportional to time information and the scale, s, is proportional to the inverse of 
the frequency information. To find the constituent wavelets of the signal, the coefficients should be 
multiplied by the relevant version of the mother wavelet.  
 
The scale of a wavelet simply means how stretched it is along the x-axis, larger scales are more 
stretched: 
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Figure 2.4 The db8 wavelet shown at two different scales 
 
 
The translation is how far it has been shifted along the x-axis.  Figure 2.5 shows a wavelet, figure 2.6 
shows the same mother wavelet translated by k: 
 
 

 
Figure 2.5 
 
 

                  
 
Figure 2.6 The same wavelet as in figure 2.5, but translated by k 
 
 
 
 
The Wavelet Toolbox User's Guide [7] suggests five easy steps to compute the CWT coefficients for a 
signal.  
 
1.  Choose a wavelet, and compare this to the section at the start of the signal. 
2.  Calculate C, which should measure how similar the wavelet and the section of the signal are.   
3. Shift the wavelet to the right by translation τ, and repeat steps 1 and 2, calculating values of C for all 
translations.  
4. Scale the wavelet, and repeat steps 1-3. 
5. Repeat 4 for all scales.                     
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The coefficients produced can form a matrix at the different scale and translation values; the higher 
coefficients suggest a high correlation between the part of the signal and that version of the wavelet.  
Figure 2.7 shows a signal and a plot of the corresponding CWT coefficient matrix. The colours in the 
coefficients matrix plot show the relative sizes of the coefficients. The signal is very similar to the 
wavelet in light areas, dark area shows that the corresponding time and scale versions of the wavelet 
were dissimilar to the signal.     
 

 
 

Figure 2.7 Screen print from Matlab Wavelet Toolbox GUI. The top graph shows the signal to be 
analysed with the CWT. The bottom plot shows the coefficients at corresponding scale and times.  The 
horizontal axis is time, the vertical axis is scale.  
 
 
 
2.1.4 Sampling and the Discrete Wavelet Series 
 
In order for the Wavelet transforms to be calculated using computers the data must be discretised.  A 
continuous signal can be sampled so that a value is recorded after a discrete time interval, if the Nyquist 
sampling rate is used then no information should be lost. With Fourier Transforms and STFT's the 
sampling rate is uniform but with wavelets the sampling rate can be changed when the scale changes.  
Higher scales will have a smaller sampling rate. According to Nyquist Sampling theory, the new 
sampling rate N2 can be calculated from the original rate N1 using the following: 
 

1
2

1
2 N

s
s

N =
          

 where s1 and s2 are the scales. So every scale has a different sampling rate.  
 
After sampling the Discrete Wavelet Series can be used, however this can still be very slow to compute.  
The reason is that the information calculated by the wavelet series is still highly redundant, which 
requires a large amount of computation time. To reduce computation a different strategy was discovered 
and Discrete Wavelet Transform (DWT) method was born.  
 
2.1.5 DWT and subsignal encoding 
 
The DWT provides sufficient information for the analysis and synthesis of a signal, but is 
advantageously, much more efficient.     
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Discrete Wavelet analysis is computed using the concept of filter banks. Filters of different cut-off 
frequencies analyse the signal at different scales. Resolution is changed by the filtering, the scale is 
changed by upsampling and downsampling. If a signal is put through two filters:  
 
(i) a high-pass filter, high frequency information is kept, low frequency   information is lost. 
(ii) a low pass filter, low frequency information is kept, high frequency  information is lost.   
 
then the signal is effectively decomposed into two parts, a detailed part (high frequency), and an 
approximation part (low frequency).  The subsignal produced from the low filter will have a highest 
frequency equal to half that of the original. According to Nyquist sampling this change in frequency 
range means that only half of the original samples need to be kept in order to perfectly reconstruct the 
signal. More specifically this means that upsampling can be used to remove every second sample. The 
scale has now been doubled.  The resolution has also been changed, the filtering made the frequency 
resolution better, but reduced the time resolution.   
 
The approximation subsignal can then be put through a filter bank, and this is repeated until the required 
level of decomposition has been reached.  The ideas are shown in figure 2.8. 
 
 

Figure 2.8 
 

 
 
The DWT is obtained by collecting together the coefficients of the final approximation subsignal and all 
the detail subsignals. 
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Overall the filters have the effect of separating out finer and finer detail, if all the details are 'added' 
together then the original signal should be reproduced. Using a further analogy from Hubbard[4] this 
decomposition is like decomposing the ratio 87/7 into parts of increasing detail, such that: 
 
 87 / 7  =   10 + 2 + 0.4 + 0.02 + 0.008 + 0.0005 
 
The detailed parts can then be re-constructed to form 12.4285 which is an approximation of the original 
number 87/7.  
 
 
2.1.6 Conservation and Compaction of Energy 
 
An important property of wavelet analysis is the conservation of energy.  Energy is defined as the sum 
of the squares of the values.  So the energy of an image is the sum of the squares of the pixel values, the 
energy in the wavelet transform of an image is the sum of the squares of the transform coefficients.  
During wavelet analysis the energy of a signal is divided between approximation and details signals but 
the total energy does not change.  During compression however, energy is lost because thresholding 
changes the coefficient values and hence the compressed version contains less energy. 
 
The compaction of energy describes how much energy has been compacted into the approximation 
signal during wavelet analysis.  Compaction will occur wherever the magnitudes of the detail 
coefficients are significantly smaller than those of the approximation coefficients.  Compaction is 
important when compressing signals because the more energy that has been compacted into the 
approximation signal the less energy can be lost during compression.   
 
 
 
2.2 Image Compression 
 
Images require much storage space, large transmission bandwidth and long transmission time.  The only 
way currently to improve on these resource requirements is to compress images, such that they can be 
transmitted quicker and then decompressed by the receiver.  
 
In image processing there are 256 intensity levels (scales) of grey. 0 is black and 255 is white.  Each 
level is represented by an 8-bit binary number so black is 00000000 and white is 11111111.   An image 
can therefore be thought of as grid of pixels, where each pixel can be represented by the 8-bit binary 
value for grey-scale.  
 
 

 
 Figure 2.9 
 
 
The resolution of an image is the pixels per square inch. (So 500dpi means that a pixel is 1/500th of an 
inch).  To digitise a one-inch square image at 500 dpi requires 8 x 500 x500 = 2 million storage bits. 
Using this representation it is clear that image data compression is a great advantage if many images are 
to be stored, transmitted or processed.  
 
According to [6]  "Image compression algorithms aim to remove redundancy in data in a way which 
makes image reconstruction possible."  This basically means that image compression algorithms try to 
exploit redundancies in the data;  they calculate which data needs to be kept in order to reconstruct the 
original image and therefore which data can be 'thrown away'. By removing the redundant data, the 
image can be represented in a smaller number of bits, and hence can be compressed.  
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But what is redundant information? Redundancy reduction is aimed at removing duplication in the 
image. According to Saha there are two different types of redundancy relevant to images:  
 
(i)  Spatial Redundancy � correlation between neighbouring pixels.  
(ii) Spectral Redundancy - correlation between different colour planes and spectral bands. 
 
Where there is high correlation, there is also high redundancy, so it may not be necessary to record the 
data for every pixel.  
 
There are two parts to the compression: 
 
1. Find image data properties; grey-level histogram, image entropy, correlation functions etc.. 
2. Find an appropriate compression technique for an image of those properties. 
 
 
2.2.1 Image Data Properties 
 
In order to make meaningful comparisons of different image compression techniques it is necessary to 
know the properties of the image. One property is the image entropy; a highly correlated picture will 
have a low entropy.   For example a very low frequency, highly correlated image will be compressed 
well by many different techniques; it is more the image property and not the compression algorithm that 
gives the good compression rates.  Also a compression algorithm that is good for some images will not 
necessarily be good for all images, it would be better if we could say what the best compression 
technique would be given the type of image we have. One way of calculating entropy is suggested by 
[6] : 
 
 

If an image has G grey-levels and the probability of grey-level k is P(k) the entropy He is: 
 

∑
−

=

−=
1

0
2 )]([log)(

G

k
e kPkPH              [6] 

 
 

Information redundancy, r, is     
 
  r = b - He             [6] 
 
where b is the smallest number of bits for which the image quantisation levels can be represented.  
 
Information redundancy can only be evaluated if a good estimate of image entropy is available, but this 
is not usually the case because some statistical information is not known.  An estimate of He can be 
obtained from a grey-level histogram.    
 
If h(k) is the frequency of grey-level k  in an image f, and image size is MxN then an estimate of P(k) 
can be made: 
 

   
MN

khkP )()(~ =     [6] 

 
Therefore, 
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The Compression ratio K  = b / He  
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2.2.2 Compression techniques 
  
There are many different forms of data compression. This investigation will concentrate on transform 
coding and then more specifically on Wavelet Transforms. 
 
 
Image data can be represented by coefficients of discrete image transforms. Coefficients that make only 
small contributions to the information contents can be omitted.  Usually the image is split into blocks 
(subimages) of 8x8 or 16x16 pixels, then each block is transformed separately. However this does not 
take into account any correlation between blocks, and creates "blocking artifacts" , which are not good if 
a smooth image is required.  
 
However wavelets transform is applied to entire images, rather than subimages, so it produces no 
blocking artefacts. This is a major advantage of wavelet compression over other transform compression 
methods.  
 
 
Thresholding  in Wavelet Compression  
 
For some signals, many of the wavelet coefficients are close to or equal to zero. Thresholding can 
modify the coefficients to produce more zeros. In Hard thresholding any coefficient below a threshold λ, 
is set to zero.  This should then produce many consecutive zero's which can be stored in much less 
space, and transmitted more quickly by using entropy coding compression.   
 
An important point to note about Wavelet compression is explained by Aboufadel[3]: 
 
"The use of wavelets and thresholding serves to process the original signal, but, to this point, no actual 
compression of data has occurred".  
 
This explains that the wavelet analysis does not actually compress a signal, it simply provides 
information about the signal which allows the data to be compressed by standard entropy coding 
techniques, such as Huffman coding.  Huffman coding is good to use with a signal processed by wavelet 
analysis, because it relies on the fact that the data values are small and in particular zero, to compress 
data. It works by giving large numbers more bits and small numbers fewer bits.  Long strings of zeros 
can be encoded very efficiently using this scheme. Therefore an actual percentage compression value 
can only be stated in conjunction with an entropy coding technique. To compare different wavelets, the 
number of zeros is used. More zeros will allow a higher compression rate, if there are many consecutive 
zeros, this will give an excellent compression rate.  
 
 
2.2.3 Images in MATLAB 
 
The project has involved understanding data in MATLAB, so below is a brief review of how images are 
handled.  Indexed images are represented by two matrices, a colormap matrix and  image matrix.  
 
(i) The colormap is a matrix of values representing all the colours in the image. 
(ii)  The image matrix contains indexes corresponding to the colour map colormap. 
 
A colormap matrix is of size Nx3, where N is the number of different colours in the image. Each row 
represents the red, green, blue components for a colour.  
 

e.g. the matrix 







222

111
bgr

bgr
   

 
represents two colours, the first have components r1, g1, b1, and the second having the components r2, 
g2 and b2.  
 
The wavelet Toolbox only supports indexed images that have linear, monotonic colormaps. Often colour 
images need to be pre-processed into a grey scale image before using wavelet decomposition.  
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The Wavelet Toolbox User's Guide [7] provides some sample code to convert colour images into grey 
scale (section 2-87), this will be useful if I need to put any images into MATLAB.  
 
 
2.3. Wavelets  and Compression 
 
Wavelets are useful for compressing signals but they also have far more extensive uses. They can be 
used to process and improve signals, in fields such as medical imaging where image degradation is not 
tolerated they are of particular use.  They can be used to remove noise in an image, for example if it is of 
very fine scales, wavelets can be used to cut out this fine scale, effectively removing the noise.   
 
 
 
2.3.1 The Fingerprint example 
 
The FBI have been using wavelet techniques in order to store and process fingerprint images more 
efficiently.  The problem that the FBI were faced with was that they had over 200 Million sets of 
fingerprints, with up to 30,0000 new ones arriving each day, so searching through them was taking too 
long. The FBI thought that computerising the fingerprint images would be a better solution, however it 
was estimated that checking each fingerprint would use 600Kbytes of memory and even worse 2000 
terabytes of storage space would be required to hold all the image data.  

 
The FBI then turned to wavelets for help, adapting a technique to compress each image into just 7% of 
the original space. Even more amazingly, according to Kiernan[8], when the images are decompressed 
they show "little distortion". Using wavelets the police hope to check fingerprints within 24 hours.  
 
Earlier attempts to compress images used the JPEG format; this breaks an image into blocks eight pixels 
square. It then uses Fourier transforms to transform the data, then compresses this. However this was 
unsatisfactory, trying to compress images this way into less than 10% caused "tiling artefacts" to occur, 
leaving marked boundaries in the image. As the fingerprint matching algorithm relies on accurate data to 
match images, using JPEG would weaken the success of the process.  
 
However wavelets don't create these "tiles" or "blocks", they work on the image as a whole, collecting 
detail at certain levels across the entire image. Therefore wavelets offered brilliant compression ratios 
and little image degradation; overall they outperformed the techniques based on Fourier transforms.  
 
The basic steps used in the fingerprint compression were:  
 
(1) Digitise the source image into a signal s 
(2) Decompose the signal s into wavelet coefficients 
(3) Modify the coefficients from w, using thresholding to a sequence w'. 
(4) Use quantisation to convert w' to q. 
(5) Apply entropy encoding to compress q to e.    
 
 
2.3.2   2D Wavelet Analysis 
 
Images are treated as two dimensional signals, they change horizontally and vertically, thus 2D wavelet 
analysis must be used for images. 2D wavelet analysis uses the same 'mother wavelets' but requires an 
extra step at every level of decomposition.   
 
The 1D analysis filtered out the high frequency information from the low frequency information at 
every level of decomposition; so only two subsignals were produced at each level.  
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In 2D, the images are considered to be matrices with N rows and M columns. At every level of 
decomposition the horizontal data is filtered, then the approximation and details produced from this are 
filtered on columns.  
 
 
 

 
 
Figure 2.11 
 
 
 
At every level, four sub-images are obtained; the approximation, the vertical detail, the horizontal detail 
and the diagonal detail. Below the Saturn image has been decomposed to one level.  The wavelet 
analysis has found how the image changes vertically, horizontally and diagonally.  
 
 

Figure 2.12  2-D Decomposition of  Saturn Image to level 1 
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To get the next level of decomposition the approximation sub-image is decomposed, this idea can be 
seen in figure 2.13: 
 
 
 

 
 
Figure 2.13 A screen print from the Matlab Wavelet Toolbox GUI showing the saturn image 
decomposed to level 3. Only the 9 detail sub-images and the final sub-image is required to reconstruct 
the image perfectly. 

 
 
 
2.3.3 Wavelet Compression in MATLAB 
 
MATLAB has two interfaces which can be used for compressing images, the command line and the 
GUI. Both interfaces take an image decomposed to a specified level with a specified wavelet and 
calculate the amount of energy loss and number of zero's.  
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When compressing with orthogonal wavelets the energy retained is [7]: 
 
 

2

2

2)) signal, nalnorm(origi-(vector
2)) ion,decompositcurrent   theof snorm(coeff-(vector*100

 

 
 
The number of zeros in percentage is defined by [7]: 
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To change the energy retained and number of zeros values, a threshold value is changed. The threshold 
is the number below which detail coefficients are set to zero. The higher the threshold value, the more 
zeros can be set, but the more energy is lost.  Thresholding can be done globally or locally. Global 
thresholding involves thresholding every subband (sub-image) with the same threshold value. Local 
thresholding involves uses a different threshold value for each subband.  
 
 
 
 
3. Implementation 

 
 

3.1. Choosing the Images 
 
The images used were selected from a range of over 40 images provided in Matlab.  A script was 
programmed to calculate the entropy He of an image using the equations: 
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The script read through the image matrix noting the frequency, h ,of  each intensity level, k.  Images that 
were not already in a matrix format had to be converted using the imread function in Matlab. For 
example to convert an image file tire.tif to a Matlab matrix, X, the following code could be use: 
 
    X =double( imread(�tire.tif�));  
 
The entropy could then be calculated using:   
 
       He = imageEntropy(X);  
 
 
 
The entropy results showed a range of entropies from 0.323 to 7.7804 and a sample of 9 images was 
selected to represent the full range with intervals as even as possible. Two further images were added to 
act as controls and help confirm or disprove the effect of image entropy on compression.  Since the 
image entropy of control 1 (�Saturn�) was similar to the image �Spine� similar results would tend to 
confirm the significance of image entropy.  This also applied to control 2 (�Cameraman�) and �Tire�. 
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Image Image Entropy 
 

Text 0.323 
Circbw 0.9996 
Wifs 1.9754 
Julia 3.1812 
Spine 4.0935 
Saturn (control 1) 4.114 
Woman 5.003 
Facets 6.0264 
Tire 6.9265 
Cameraman (control 2) 7.0097 
Bonemarr 7.7804 

 
 
 

3.2. Collecting Results 
 
3.2.1 The Results Collected 
 
The results that were collected were values for percentage energy retained and percentage number of 
zeros. These values were calculated for a range of threshold values on all the images, decomposition 
levels and wavelets used in the investigation.  
 
The energy retained describes the amount of image detail that has been kept, it is a measure of the 
quality of the image after compression. The number of zeros is a measure of compression.  A greater 
percentage of zeros implies that higher compression rates can be obtained.    

 
 

3.2.2 How the Results were collected 
 
Results were collected using the wdencmp function from the Matlab Wavelet toolbox, this returns the L2 
recovery (energy retained) and percentage of zeros when given the following inputs: 
 

1. �gbl� or �lvd� for global or level dependent thresholding 
2. an image matix 
3. a wavelet name 
4. level of decomposition 
5. threshold value(s) 
6. �s� or �h� for sort or hard thresholding 
7. whether the approximation values should be thresholded 

 
 

 An automated script (calcres.m) was written which took as inputs an image, a wavelet and a level.  It 
calculated 10 appropriate threshold levels to use (see section 3.3) and  then collected the energy retained 
and percentage of zeros using wdencmp with the given image, wavelet, decomposition level for each of 
the 10 threshold values.   

 
For example,  RES =calcres (X, �db1�, 2) would give a results matrix RES for the image matrix X, 
wavelets �db1� and level 2 of decomposition. The RES matrix has three columns, the first is threshold 
value, the second is percentage of zeros and the third is energy retained.  

 
 
3.3 Choosing the threshold values 
 
There are a number of different options for thresholding. These include   

1. The approximation signal is thresholded or not thresholded 
2. Level dependent or global threshold values 
3. Threshold different areas of an image with different threshold values  
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3.3.1 Thresholding for Results set 1 

 
The first set of results used the simplest combination which was to use global thresholding and not to 
threshold the approximation signals. To get an even spread of energy values, the function �calcres� first 
calculated the decomposition coefficients up to the level given as input. The script then calculated 10 
values to be evenly spread along the range 0�max_c, where max_c is the maximum value in the 
coefficients matrix. (see figure 3.1)    

 

 
Figure 3.1  The spread of coefficients, 10 points are sampled.  
 
 
However it was observed that the results for energy retained and percentage zeros only changed 
significantly between the first 4 or 5 thresholds. The most dramatic compression and energy loss 
occurred before reaching a threshold of 0.25max_c. The reason for this must be because a large 
percentage of coefficients and energy occurs at the lower values, therefore setting these values to zero 
would change a lot of the coefficients, and increase the compression rate. Setting the higher values to 
zero had little effect on compression because there weren�t many coefficients to affect.   
 
Therefore the threshold calculations were changed to zoom in on the first quarter of possible thresholds 
(figure 3.2). The idea of this was to get a better view of how the energy was lost with thresholding, the 
optimal compromise between energy loss and compression, if any were possible, was more likely to be 
contained within this section.  

 
Figure 3.2 

 
 
   

3.3.2 Thresholding for Results set 2 
 
This used local thresholding (see figure 3.3). The function �calcres2� was written to calculate the 
coefficient matrices for each level and direction (horizontal, vertical and diagonal), the maximum value 
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for each level was noted. Again 10 sample of threshold values were taken from the range 0..max_c  for 
each local value. The first thresholds were all zero, the 10th set contained the maximum values for each.  
 

 
Figure 3.3 Each level and direction subsignal can be thresholded differently.  The Level 3 horizontal 
would be tested with thresholds in the range 0 to 880 but the level 1 diagonal only requires a range of 
thresholds 0 to 120.  
 
 
3.4 Collecting results for all images 

 
 

The function �calcres� (or �calcres2�) was used to get one set of results, for a particular combination of 
image, wavelet and decomposition level. However results were required for many images with many 
wavelets at many decomposition levels. Therefore an automated script was written 
(getwaveletresults.m), which follows the following algorithm: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

For each image, 
 For each wavelet, 
  For level=1 to 5, 
   RES = calcres(image, wavelet, level) 
   Save RES 
  end 
 end 
end 
 
The list of images and wavelets to use are loaded from a database, using the Database 
Toolbox. (see section 3.5).  The results are then saved in the database.  
 



   18 

 
 
 
3.5 Using the Database Toolbox 
 
The Database Toolbox was used to provide a quick and relatively simple solution to problems involved 
with saving the results. Originally the results were saved to a large matrix but in Matlab the matrix 
couldn�t include strings, so the names of images and wavelets could not be included in the matrix. The 
initial solution was to give each image and wavelet a numeric identifier that could be put into the matrix. 
The image names and wavelet names could then be written in separate files, and the ID values linked to 
their position in this file. However this lead to concurrency problems, if the image file was changed then 
the results pointed to the wrong images and thus were wrong.  The second idea was to save a matrix of 
strings in the same file that the results matrix was saved, however if the strings are of different lengths  
they can not go into the same matrix. Thus database toolbox allows Matlab to communicate with a 
database  e.g. MS Access database in order to import and export data.  An advantage of saving results 
into a database of this sort is that SQL statement can be used to retrieve certain sets of data and thus 
makes the analysis of results a lot easier.  
 
The database contained 3 tables: Images, Results and Wavelets 
 

  
Figure 3.5 
 
 
 
3.6 Method of Analysis 
 
In order to analyse the results, graphs were plotted of energy retained against percentage of zeros.   In an 
ideal situation an image would be compressed by 100% whilst retaining 100% of the energy.  The graph 
would be a straight line similar to: 
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Figure 3.6 

 
 

 
The best threshold to use would be one that produced 100% zeros whilst retaining 100% of the energy , 
corresponding to point E above.  However, since energy retained decreases as the number of zeros 
increases, it is impossible for the image to have the same energy if the values have been changed by 
thresholding. Thus all the graphs produced had the general form shown as in Figure 3.7.   
 
 

 
 Figure 3.7 

 
 

Important things to analyse about the curves were: 
 

1. The starting point:  the x co-ordinate gives the percentage of zeros with no thresholding and 
therefore shows how much the image could be compressed without thresholding. 

2. The end point:  this shows how many zeros could be achieved with the investigated thresholds 
and how much energy is lost by doing so.  

3. The changing gradient of the curve: this shows how rapidly energy is lost when trying to 
compress the image.   It is the ability of wavelets to retain energy during compression that is 
important, so energy being lost quickly suggests that a wavelet is not good to use.  

 
 
3.6.1  Defining the Best Result 
 
In figure 3.7 the starting point indicates the best energy retention and the end point indicates the best 
compression.  In practice compressing an image requires a �trade-off� between compression and energy 
loss.    It may not be better to compress by an extra small amount if this would cause a dramatic loss in 
energy. 
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The Distance, D 
 
For the purposes of this study it was decided to define the best �trade-off� to be the point T on the curve 
which was closest to the idealised point E.  This was calculated using simple Pythagoras Theorem with 
the ten known points on each graph.   For the rest of the study the distance between each point T and 
point E will be know simply as D.   
 

D = 22 )100()100( yx tt −+−  

 

 
Figure 3.8 

 
 
By calculating D for each result we can take the minimum to be the best, in other words the most 
efficient at retaining energy while compressing the signal. This will not necessarily be the best to use for 
all situations but be the most efficient found in the results.  
 
 
 
Energy Loss per percentage Zero Ratio 
 
A second possible measure of the best result is the ratio of Energy Loss per percentage Zero. This can be 
calculated for each result by the following equation: 
 
Energy Loss per percentage Zero  =   100% - %Energy Retained 

 %Zeros 
 
 

 
This gives a measure of how much energy is lost by compressing the images, so a smaller value for the 
ratio would mean the compression is less lossy, and therefore better.  
 
 
4. Analysis of Results: Set 1  (Global Thresholding) 
 
 

Results Set 1 
Images 
 

text, circbw, wifs, julia, spine, saturn, woman, facets, tire, cameraman, 
bonemarr 

Wavelets 
 

db1. db3, db5, db7, db9 

Decomposition Levels  
 

1,2,3,4,5 

Thresholding 
 

Global.  Based on coefficients of final level. Sampled between 0 and  
0.25max_Coefficient.  
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4.1 The Effect of Changing the Decomposition Levels   
 
At first glance the results showed a clear pattern, in that decomposing the images to greater levels 
increased the compression but reduced the energy retention.  An example of  this is shown below (figure 
4.1). 
 
 

  
Figure 4.1 
 
After analysing the graphs it could be seen that at higher decomposition levels: 
 
1.  The percentage of zeros at 100% energy retention was higher.  This suggested a better compression 

rate had been gained by simply analysing at a deeper level without the need for thresholding (as this 
point corresponds to a global threshold of 0).    

2.  The end point was at a higher percentage of zeros but lower energy retained. This suggested that 
more compression was obtained by decomposing an image to greater levels but by doing so much 
energy was lost.   

3.  The gradient is steeper at higher levels, suggesting that more energy is lost for every % compression 
gained. 

 
 
However on deeper analysis the conclusions 1-3 about the graphs could be false. This is due to how the 
global threshold values were calculated.  The threshold values were chosen from the range 0..max_C, 
where max_C is the maximum coefficient in the decomposition.  However this value comes from the 
final approximation subsignal, and increases with level of decomposition.   Even though the coefficients 
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for level one details were the same however many levels were reached, the thresholds depended  on the 
number of levels used. This resulted in an increased percentage of zeros and a reduction in the energy. 
The patterns shown in Figure 4.1 came not from the decomposition level changes but because of how 
the thresholds had been changed.  It was decided that patterns could be seen more easily if local 
thresholding was used, this would mean each coefficient matrix was thresholded with values relevant to 
the values it contained, which wouldn�t be affected by  decomposing to greater levels.  The beauty of 
how wavelets divide the information up into approximation and detail subsignals means that local 
thresholding is very simple and yet can provide great power in choosing the number of zeros and energy 
retention.   
 
It was difficult to come to any firm conclusions about the gradient as only 10 points had been sampled 
and therefore simply joining the points did not show the true shape of the curve.  
 

  
Figure 4.2 
 
 
For example in figure 4.2, a straight line could be used to join points A and B, this would be pessimistic 
view of how the energy is lost.  The true curve may not be this steep, in fact it might be that little energy 
is lost up to a certain point after which there is a sudden drop in energy retained.   The real curve is 
likely to be somewhere in between the two, showing a gradual change in energy as the compression is 
increased through thresholding.  The actual gradient will depend on the image and wavelet used, as 
these decide the co-efficient values, and therefore how thresholds will affect them.  A sudden and 
relatively large change in energy would suggest that there was a substantial number of coefficients  of a 
certain value and the threshold value used had just removed them.  A very smooth and gradual change in 
energy and compression suggests that the energy is spread evenly throughout values, such that there are 
a large number of small valued coefficients and a small number of large valued coefficients.  
 
In conclusion, in calculating results set 1 the effect of thresholding and in particular global thresholding 
had been severely underestimated.   What has been learned from the results is that the choice of  
threshold values is extremely important in compression. Wavelets and decomposition levels divide the 
energy of an image between different subsignals, which in itself can provide compression if the detail 
coefficients are zero.  However, to get the best compression rates thresholding is required.  Thresholds 
hold the power to decide which energy is kept and which is lost.  There is a huge range of potential 
thresholds and each detail matrix deserves to have its own local threshold if it is to provide the best mix 
between energy retained and percentage of zeros.  
 
Local thresholding implies that the detail matrices for a given level, direction, image and wavelet will be 
thresholded with the same values whatever the maximum level of decomposition is used. Thus any 
differences seen in the graphs of results with local thresholding will be a result of the decomposition 
level rather than the threshold values used.   
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4.2 The Effect of Wavelet Types 
 
No conclusive pattern could be found in from looking at the %Energy Retained - %Zeros graphs with 
different wavelets. The wavelets definitely changed the energy  and number of zeros but how well the 
wavelet worked seemed very dependent on the images. This is not surprising because the ability of a 
wavelet to compact energy depends on the energy spread within the image.  As explained in section 4.1 
more reliable conclusions can be drawn from compressing the images with local thresholds.  
 
 
4.3 The Effect of Changing the Images 
 
The images affected how energy was lost with thresholding, this is because the image affects the values 
and spread of coefficients in the approximation and detail matrices. There didn�t appear to be any 
pattern between the image entropy and how the compression differed. This suggested that the image 
entropy calculated did not characterise the image�s compressibility with wavelets.  The image entropy 
was a measure of disorder in the image, it looked at the frequency of different intensity values. However 
wavelets depend on how the energy is changing, not just what energy is contained within the image.  A 
further discussion on image properties can be found in section 6 of this report.   
 
 
5. Analysis of Results: Set 2 (Local Thresholding) 
 

Results Set 1 
Images 
 

text, circbw, wifs, julia, spine, saturn, woman, facets, tire, cameraman, 
bonemarr 

Wavelets 
 

db1. db3, db5, db7, db9 

Decomposition Levels  
 

1,2,3,4,5 

Thresholding 
 

Local. Based on coefficient matrix for each level and direction. Sampled 
between 0 and max_C of each matrix.  

 
 
5.1 The Effect of the Decomposition Level 
 
The higher the decomposition level the higher percentage of zeros obtained with no thresholding. This is 
because decomposing to greater levels means that a higher percentage of coefficients come from detail 
subsignals.  Detail subsignals generally have a smaller range of values than the approximation 
subsignals, ideally zero values. Therefore this pattern shows that as decomposition level increases, more 
detail is filtered out with value zero.   
 
The energy loss at the maximum threshold was higher at greater levels of decomposition. This again is 
because at higher levels of decomposition there is a higher proportion of the coefficients in the detail 
subsignals.  So a higher percentage of the energy is lost by removing all the detail.   
 
Figure 5.1 is an example of how the decomposition levels affected the number of zeros and energy 
retained for the �woman� image.   This can be compared with figure 4.1 to show the difference between 
local and global thresholding. The graphs for local thresholding show a much smoother and gradual loss 
in energy and increase in compression than the graphs for global thresholding.  
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Figure 5.1 The effect of decomposition levels on the �woman� image 
 
 
 

In section 3, the measurement D was defined in order to find the best �trade off� between number of 
zeros and the energy retained.  The lowest values for D were found at decomposition levels 3 and 4.  
Looking at figure 5.2 it can be seen that level 1 showed the smallest range of values for D, but also often 
the highest.    So if the smallest change in energy is required then level 1 is good to use, otherwise better 
solutions can be found by decomposing to more levels.  However decomposing too much is bad because 
more energy is lost.  The best �trade-offs� were therefore found at decomposition levels 3 and 4.  
 

  
Figure 5.2  
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A point to note about these D values is that although it is interesting to look at the general trends, the 
specific range of values possible may not be shown by the results. This is because only 10 points were 
sampled from a huge number of potential threshold combinations, meaning that there may be an optimal 
value that has not been found in the results.  Thus although D could be useful in showing  which is the 
best trade-off, all the possible threshold combinations would need to be looked at to find the optimal 
value.   
 
The %Energy loss to % Zeros ratio, defined in section 3, showed a pattern for all images at all wavelets, 
an example can be seen in figure 5.3. The minimum and maximum ratio increased with level and so did 
the range of values. This suggests that best ratio is always obtained from lower level of decomposition.  
The ratio is related to gradient of the %Energy retained - %Zeros curves (the negative inverse of the 
gradient), so the ratio gives a measure of how steeply the gradient is changing and hence how easily 
energy is lost.  So while a higher proportion of the detail coefficients are from the lower decomposition 
levels the energy contained in the lower level detail matrices is smaller then the energy contained in the 
higher level detail matrices. 
  

 
Figure 5.3 
 
 
5.2 The Effect of the Wavelet 
 
The wavelet definitely changed  the shape of the %Energy Retained - %Zeros curve but no particular 
pattern could be seen overall.  The results that can be obtained from different wavelets depends on 
image and level used.  This is because different wavelets look at the energy changes in the image 
differently.  Wavelets with longer supports (e.g db9 has longer supports than db1) take into account the 
changes between a greater number of pixels and are therefore less localised, but they also change faster 
so they may be better in approximating fast energy changes.  The results have been plotted in figures 5.4 
and 5.5 for two different images, to show how the image and level can have a great effect on the 
compression.  
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Figure 5.4 
 
 
 
 

 
 

Figure 5.5 
 
 

The above two figures of results  for �saturn� and �circbw� show that the wavelets work differently on 
different images and the best wavelet to use will not be the same for all images.  
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5.3 The Effect of Changing the Image 
 
No general trend could be found in the results, other than the image had a huge effect on the 
compression and energy rates. While analysing the lowest D value for each image might provide 
information on how the images compare, these D values may not be the optimal value and hence the 
information may not be useful.   However there are two features of the %Energy retained - %Zeros 
curves that are not dependent on the threshold value, but simply the combination of image, wavelet and 
decomposition level,  these  are the start point and end point of the curves. The start point occurs where 
the threshold was zero, so this shows how compressible the image is without thresholding (were 100% 
of the energy is retained).  These zeros will either be from a detail subsignal where there are areas of 
uniform intensity in the image, or from the approximation subsignal, where the image contains zero 
values.  The end point is where all the detail has been thresholded, so this shows how much energy has 
been compacted into the final approximation signal.  
 
Therefore the range of possible %zero values and the range of possible %energy retained values can be 
said with certainty. The results are shown in the table below: 
 
 

Image Min. 
%Zeros. 

Max. %Zeros. Min. %Energy 
Retained 

Max. %Energy 
Retained 

Bonemarr 0 99.89 86.03 100 
Cameraman 0 99.90 85.15 100 
Circbw 13.94 99.91 61.70 100 
Facets 0 99.90 79.95 100 
Julia 0 99.89 79.55 100 
Mixed *2 0 99.90 46.86 100 
Plain *1 0 99.90 93.71 100 
Random *3 0 99.90 73.34 100 
Saturn  40.67 99.93 90.14 100 
Spine 29.31 99.92 86.31 100 
Text 53.9 99.94 14.43 100 
Tire 0 99.88 59.89 100 
Wifs 49.43 98.64 55.03 100 
Woman 0 99.90 86.56 100 
 

*1 Plain is an image where all values are 255.   
*2 Mixed is an image with consecutive values changing between 0 and 255, similar to a chessboard  
*3 Random is an image created from random numbers.  
 
Five of the images had a minimum number of zeros greater than 0. This means that without thresholding 
a number of zeros could be obtained, simply with the combination of image and wavelet. These five 
particular images have large areas of black, which provides zeros in the approximation subsignal.  For 
an image such as �Text� which loses up to 85.57% of its energy during compression, comfort can be 
taken in the fact that it has come with an in-built compression of 53.9% simply from the intensity values 
it contains.     
 
Looking at the maximum zeros it can be seen that with the exception of �Wifs� (with 98.64) 
compressions of over 99% are possible for all images. Therefore wavelets are extremely effective at 
compression the image data.  This is because wavelets are good at gradually filtering more data out until 
there is only a small approximation signal left.  
 
The cost of high compression (energy loss) varies greatly between the images. �Plain� and �Saturn� have 
the highest minimum energy suggesting that they are best suited to compression with Daubechies 
wavelets, over 93.71% energy retention is guanteed for �Plain� whatever the thresholding strategy.   
 
If the minimum and maximum values are looked at more closely for the �plain� image it can be seen that 
the Haar wavelet (db1) is ideally suited to this: (see the following table) 
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Plain 

Wavelet Min Zeros. Max Zeros. Min Energy Ret 
db1 (Haar) 75 99.90 100 
db3 0 99.79 93.71 
db5 0 99.66 94.74 
db7 0 99.50 95.46 
db9 0 99.32 93.91 

 
  
Because of the way that the Haar wavelet performs averaging and differencing between pixel values to 
form the approximation and detail coefficients, all the detail coefficients are zero, which means 100% of 
the energy can be compacted into the approximation subsignal giving a compression of 99.90%.  The 
other wavelets are however not as good, they try to find more sudden changes in the image and look at 
how the intensity values are changing over a greater number of pixels. As the �plain� image has uniform 
intensity values, the pixels values are not changing so the wavelets which try to approximate changes 
are not as useful.  
 
5.4 Conclusions 
 
Although global thresholding can be used successfully to compress images it is difficult to find a global 
threshold that will give near optimal results because of how the different detail subsignals differ.  Global 
thresholding leads to unnecessary energy losses in order to obtain a certain compression rate.  Therefore 
it is more logical to use local thresholds.  
 
Although the thresholding strategy was improved by using a local rather than global technique the 
results only used a very small proportion of the possible threshold combinations.  There are many clever 
solutions to thresholding available. For example, the threshold was calculated as a fraction of the 
maximum coefficient.    However this did not take into account the energy contained in each detail 
signal.  It may be better, for example, to threshold the first 50% of some signals, while leaving others 
that contain a lot of energy not thresholded.   Using this idea any value of energy retention or 
alternatively any value of compression can be obtained by thresholding the details with less energy the 
most, until the required value is obtained.   
 
The decomposition level changes the proportion of detail coefficients in the decomposition. 
Decomposing a signal to a greater level provides extra detail that can be thresholded in order to obtain 
higher compression rates. However this also leads to energy loses. The best �trade-off� between energy 
loss and compression is provided by decomposing to levels 3 and 4. Decomposing to fewer levels means 
provides better energy retention but not as great compression, decomposing to higher levels provides 
better compression but more energy loss. 
 
The type of wavelet affects the actual values of the coefficients and hence how many detail coefficients 
are zero or close to zero and therefore how much energy and zeros can be obtained.  Wavelets that work 
well with an image redistribute as much energy as possible into the approximation subsignal, while 
giving a large proportion of the coefficient value to describe details.  
 
An image is a collection of intensity values and hence a collection of energy and energy changes. The 
image has a huge effect on the compression and how well energy can be compacted into the 
approximation subsignal.  For example the minimum energy retained ranged from 14.43% for �text� to 
93.71% for �plain�, showing a variation of 79.28%. It is probably the most important factor for how 
much energy can be retained during compression. The minimum percentage of zeros is similarly 
dependent on the image. �Text� had a minimum percentage zeros of 53.9 which is due to the fact that the 
image contains 94% zeros to begin with. So in fact it may be better not to compress �Text�.  
 
The results were interesting to analyse but it was felt further investigation was required into the 
following areas:  
 

1. The image properties that affect compression (see section 6) 
2. The best thresholding techniques (see section 7) 
3. The best wavelet basis to use for a given images. 
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6. Image Properties 
 
 
So far only the image entropy of an image has been considered, this measurement took into account the 
different sizes of the images, but it did not look at the range of intensity values (or bitrate) of the images. 
If an image has intensity values in the range 0-255 then it�s bit rate is 8, as the range of 256 values can 
be represented by binary numbers of length 8.  This concept is important in considering compression,  
for example the text image had only values 0 and 1 so this only requires a bitrate of 1.  Having only 
small values is a great advantage when trying to encode information using Huffman encoding, so this is 
already, in a sense, compressed because of it range of intensity values without the need for wavelets and 
thresholding to make the values any smaller.   A concept which does take into account this bit rate is the 
redundancy of the image. If an image has a high redundancy this means that there is much information 
given in an image that is not required in order to reconstruct the image.  The calculation for this is: 
 
   r  = b � He     [6] 

 
where b is the bit rate and He is the image entropy.  
 
Another value that can be calculated is the compression ratio, K, which should give an idea of how 
compressible the image is given the entropy and bit rate: 
 

K = b / He   
 
 The following values for redundancy and compression ratio were calculated. 
 

Image Image Entropy, 
He 
 

Bit 
rate, b 

Redundancy, 
r 

Compression 
ratio, K 

Text 0.323 1 0.677 3.096 
Circbw 0.9996 1 0.0004 1.600 
Wifs 1.9754 4 2.025 2.025 
Julia 3.1812 6 2.819 1.886 
Spine 4.0935 6 1.907 1.466 
Saturn  4.114 8 3.886 1.944 
Woman 5.003 8 2.997 1.599 
Facets 6.0264 8 1.973 1.327 
Tire 6.9265 8 1.074 1.154 
Cameraman  7.0097 8 0.990 1.141 
Bonemarr 7.7804 8 0.220 0.973 

 
 
Looking at the results for redundancy, it is suggested that �Circbw� is not very redundant, which means 
that it can not be approximated very much if all the energy of the image is to be retained, thus it will 
lose energy quickly during compression. Looking at �Saturn� we can see that this is highly redundant 
compared to the other images with r=3.886, energy will not be lost quickly during compression.  
However the compression ratios for the images do not show the same pattern, this is because although 
there may be spatial redundancy between neighbouring pixels, if the bit rate is higher then the intensity 
values required to approximate the image will be higher. High values are not encoded as efficiently as 
small values so the compression ratio is not necessarily higher for redundant images.  Redundancy 
indicates how easy it is to approximate something without losing energy, it does not mean that lots of 
values to zero without losing energy.  
 
There still doesn�t seem to be a pattern between the compression results discussed in sections 4 and 5 
and the redundancy or compression ratios. This is probably because the image entropy which is used for 
the redundancy measurements and compression ratio is based simply on the frequency of each intensity 
value in the image. It does not provide any information about  where the intensity values occur. 
However the power of wavelets comes from their mulitresolution, their ability to look at which 
intensities occur at which times (or positions) in the image.  So to predict the behaviour of a technique 
that uses multliresoluion,  a measurement that can also use multiresolution is needed. That is, a way of 
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looking at where the intensity values occur, and more importantly the differences between neighbouring 
pixels is required.  
 
Wavelets work by looking at the values of neighbouring pixels, and splitting those values into an 
approximation value and a detail value.  If the pixel values are similar then the value of the detail is 
small.  Thus an image with intensity values that only have small changes between pixel values is easier 
to compress with wavelets than those that have dramatic and irregular changes.  This is because with 
these images the approximation signal will contain most of the energy, the detail signals will have 
values close to zero and therefore not much energy.  Thresholding the detail signals will therefore have 
little effect on the energy,  but  provide more zeros.  So compression can be obtained with little cost in 
energy loss. Thus if an image contains a high frequency of a certain intensity value, then this could help 
to provide a good compression rate, but it depends on where they are in the image. If they are all 
together then there will be an area of the same intensity value, and this means that the detail values will 
be zero. If they are randomly spread throughout the image, next to pixels of dissimilar intensities, then 
the fact that there was a high frequency of a certain intensity will not be enough to provide good 
compression.    
 
Looking at the spread of intensities in the �Spine� image (see figure 6.1(a) ) it can be seen that there are 
some edges of relatively large intensity change but within the edges there are regions of uniform 
intensity or small changes. So the differences between neighbouring pixels are not dramatic and the 
detail values are small, allowing lots of zeros will little energy loss.  Although peaks of high intensity 
are reached there are no sharp or dramatic changes in the energy values required to get there.  
 
In the �wifs� image which was harder to compress, the intensity values are change a lot (figure 6.1 (b)), 
which can be seen in the �spikes� of intensity levels, rather than a smooth progression from small to 
large intensities. 
 
To show how the intensity values are changing an automated script was written that traversed an image 
matrix and created a new matrix where each element is the amount of intensity change corresponding to 
each pixel in the image matrix. The intensity change was calculated by summing the differences 
between a given pixel p, and the eight pixels surrounding p.  The maximum possible intensity change is 
therefore eight times the range of intensity values in the image. For example given an image containing 
intensity values 0..255 then the range is 256. The worst case of intensity change would be where a pixel 
of intensity 255 is surrounded by eight pixels of intensity 0 as the change can be no bigger than between 
0 and 255.   
 
In �spine� the maximum possible intensity change would be 504, but the actual maximum intensity 
change is 169, proving further evidence that the spine image changes gradually. Contrasting this with 
�wifs� where the maximum possible change is 120, the actual maximum change is 103.  
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7. Thresholding Strategies 
 
7.1 Finding a Near Optimal Threshold 
 
Chang et al [12,13,14] proposed a method of finding a near optimal threshold for image denoising and 
compressing  that was adaptive to the image and each detail subband.  In their papers Chang et al 
explained that techniques introduced by Donoho and Johnstone for thresholding had performed well on 
1D signals.  The techniques used thresholding to filter additive iid Gaussian noise.  It was explained that 
a threshold �acts as an oracle which distinguishes between the insignificant coefficients likely due to 
noise, and the significant coefficients consisting of important signal structures�[12].   These insignificant 
coefficients can be thought of as noise, or coefficients that can be removed during compression without 
significantly altering the energy of the image.  It is interesting to note that thresholding can be used to 
simultaneously compress and denoise an image. 
 
Unlike Donoho and Johnstone, the thresholding strategy proposed by Chang et al was suited to images 
rather than 1D signals but the idea of filtering Gaussian noise was still used.  In fact, the strategy used an 
observation that wavelet coefficients of any subband can be described by a generalised  Gaussian 
distribution.  It also follows from this that the average mean square error (MSE) can be approximated by 
a Bayesian squared error risk. The strategy is known as BayesShrink, and it�s goal is to find the 
threshold that minimises the Bayesian risk.  It was found that for each subband the near optimal 
threshold using soft thresholding was TB= σ²/σX   where σ²  is the noise variance and  σX²  is the signal 
variance.   
 
σ²  is the noise variance but this may be difficult to measure if there is no uncorrupted image or 
optimally compressed image to measure against.  Therefore σ² can be estimated from the diagonal detail 
subband of the first decomposition level, HH1 .   
 

)σ =
Median Yij( )

.0 6745
  ,      Yij   ∈  subband HH1    [12] 

 
The BayesShrink strategy provides a near optimal threshold for preserving energy while removing 
unnecessary detail.  This is fine when the energy retained or compression rate does not need to be of a 
specific value, the best trade off is acceptable. 
 
 
7.2 Finding a Threshold for a Required Energy Retained 
 
Walker proposed in [1] a method of choosing threshold values by using cumulative energy profiles.  His 
example was a 1D signal with the Haar transform and a global threshold.  This idea was to take the 
coefficient of the transform and arrange them into decreasing order: 
 

L1 ≥ L2 ≥ L3 ≥ Ln       [1] 
 
L1  is the largest absolute coefficient value.  If two values are equal then they left in the original order.  
The cumulative energy profile is then:  
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If the amount of energy retained by compression is required, as a decimal to be Erq, then the coefficients 
required to be kept in order to retain this energy can be found using,   
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The coefficients are accumulated until Erq is reached, the final coefficient that is required to reach this 
energy is Lk. Any coefficients smaller than Lk are not required and can be thresholded to zero.  Thus the 
threshold should be chosen to be less than Lk if the minimum retained energy is Erq. 
  
The example form [1] was a global thresholding technique but the same strategy could be adapted to 
local thresholding on 2D signals. An energy profile could be calculated for each detail subband and 
thresholding done to make sure that the total energy retained of the signal did not fall below Erq.  
 
If  εA is the percentage energy of the approximation signal, ε1��ε3n the percentage energy of the 
details subbands from decomposition level 1 to n, then : 
 
 

100  =   εA  +  ε1+ ε2 ��+ ε3n 
 
 
If a fraction y of the total energy is to be retained then a certain proportion x of each detail subband 
needs to be retained: 
 
   y    =  εA  + x( ε1+ ε2 ��+ ε3n) 
 
So to calculate the proportion x, for each detail subband: 
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However the sum,  ε1+ ε2 ��+ ε3n is equal to 100-εA.   So x can be calculated from the required energy y 
and the energy of the approximation subband εA,   
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Thus to find the threshold for each subband, the cumulative energy profile should be calculated, then the 
threshold should be chosen such that the proportion of energy retained is equal to x: 
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where L1,..,Lk are the coefficients  in the subband, εs is the total energy in  the subband and the threshold 
should be chosen to be less than Lk.  The more energy that is contained within the approximation 
subband, the smaller the value of x, which means the smaller amount of energy has to be retained by the 
detail coefficients.  This should give better results than the local thresholding used to collect results set 
2, as the thresholding is done dependent on the spread of energy in the detail signal, not simply as a 
fraction of the maximum coefficient.    
 
 
There were also some other thresholding strategies suggested by the wavelet toolbox such as the �Birge-
Massart method�, �equal balance sparsity norm� and �remove near 0�. Unfortunately although it would 
have been interesting to investigate and compare these thresholding strategies there was not sufficient 
time left to research them. 
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8. Evaluation  and Possible Extensions 
 
The general aim of the project was to investigate how wavelets could be used for image compression. I 
believe that I have achieved this. I have gained an understanding of what wavelets are, why they are 
required and how they can be used to compress images. I understand only too well the problems 
involved with choosing threshold values, as Change et al. [12] state �while the idea of thresholding is 
simple and effective, finding a good threshold is not an easy task�.  
 
I have also gained a general understanding of how decomposition levels, wavelets and images change 
the division of energy between the approximation and detail subsignals.  So I did achieve an 
investigation into compression with wavelets, but the way in which I went about it could, with 
hindsight, have been better.  
 
The importance of the threshold value on the energy level was something of which I did not have an 
appreciation before collecting the results. To be more specific I understood that thresholding had an 
effect but didn�t realise the extent to which thresholding could change the energy retained and 
compression rates.  Therefore when the investigation was carried out more attention was paid to 
choosing the wavelets, images and decomposition levels than the thresholding strategy.  Using global 
thresholding is not incorrect, it is a perfectly valid solution to threshold, the problem is that using global 
thresholding masked the true effect of the decomposition levels in particular on the results. This meant 
that the true potential of a wavelet to compress an image whilst retaining energy was not shown.   
 
The investigation then moved to local thresholding which was better than global thresholding because 
each detail subsignal had its own threshold based on the coefficients that it contained. This meant it was 
easier to retain energy during compression.  However even better local thresholding techniques could be 
used.  These techniques would be based on the energy contained within each subsignal rather than the 
range of coefficient values and use cumulative energy profiles to find the required threshold values. If 
the actual energy retained value is not important, rather a near optimal trade off is required then a 
method called BayesShrink [12,13,14] could be used. This method performs a denoising of the image 
which thresholds the insignificant details and hence produces Zeros while retaining the significant 
energy.   
 
 I was perhaps too keen to start collecting results in order to analyse them when I should have spent 
more time considering the best way to go about the investigation. Having analysed the results it is clear 
that the number of thresholds analysed (only 10 for each combination of wavelet, image and level) was 
not adequate to conclude which is the best wavelet and decomposition level to use for an image. There 
is likely to be an optimal value that the investigation did not find. So it was difficult to make quantative 
predictions for the behaviour of wavelets with images, only the general trends could be investigated.  
 
I feel however that the reason behind my problems with thresholding was that thresholding is a complex 
problem in general.  Perhaps it would have been better to do more research into thresholding strategies 
and images prior to collecting results. This would not have removed the problem of thresholding but 
allowed me to make more informed choices and obtain more conclusive results.  
 
At the start of the project my aims were to discover the effect of decomposition levels, wavelets and 
images on the compression. I believe that I have discovered the effect each have, but have not been able 
to make quantative statements.  For example, I wanted to be able to analysis an image and say �with this 
sort of image it is best to use the wavelet w, decomposition level y and threshold t�. However all I can 
really say is that �image x is harder to compress than image y with wavelet w�. The reasons for this are 
mainly  due to time constraints,  if I had more time I would conduct more research into finding the best 
basis function for an image.   
 
There are many extensions to the project, each of which would be a project by itself.  The first area 
would be finding the best thresholding strategy.  How should the best thresholds be decided? There are 
many different strategies that can be compared such as the �Birge-Massart method�, �equal balance 
sparsity norm� and �remove near 0�. Perhaps certain areas of the image could be thresholded differently 
based on edge detection rather than each detail subsignal.  
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Wavelet packets could be investigated. These work in a similar way to the wavelet analysis used in this 
investigation but the detail subsignals are decomposed as well as the approximation subsignals.   This 
would be advantageous if there tends to be a lot of energy in the detail subsignals for an image.  
 
How well a wavelet can compact the energy of a subsignal into the approximation subsignal depends on 
the spread of energy in the image. An attempt was made to study image properties but it is still unclear 
as to how to link image properties to a best wavelet basis function.  Therefore an investigation into the 
best basis to use for a given image could be another extension.  
 
Only one family of wavelets was used in the investigation, the Daubechies wavelets. However there are 
many other wavelets that could be used such as Meyer, Morlet and Coiflet.  
 
Wavelets can also be used for more than just images, they can be used for other signals such as audio 
signals. They can also be used for processing signals not just compressing them. Although compression 
and denoising is done in similar ways, so compressing signals also performs a denoising of the signal.  
 
Overall I feel that I have achieved quite a lot given the time constraints considering that before I could 
start investigating wavelet compression I had to first learn about wavelets and how to use Matlab. I feel 
that I have learned a great deal about wavelets, compression and how to analyse images.  
 
 
  
9. Conclusions 
 
Wavelet analysis is very powerful and extremely useful for compressing data such as images.  Its� 
power comes from its multiresolution. Although other transforms have been used, for example the DCT 
was used for the JPEG format to compress images, wavelet analysis can be seen to be far superior, in 
that it doesn�t create �blocking artefacts�.  This is because the wavelet analysis is done on the entire 
image rather than sections at a time.  A well known application of wavelet analysis is the compression 
of fingerprint images by the FBI. 
 
The project involved writing automated scripts in Matlab which could calculate a great number of 
results for a range of images, Daubechies wavelets and decomposition levels.  The first set of results 
calculated used global thresholding, however this was found to be an inferior way of calculating 
threshold values.  To improve upon this, a second result set was calculated, using local thresholding.  
This second results set proved to be more useful in understanding the effects of decomposition levels, 
wavelets and images.  However, this was still not the optimal thresholding in that it is possible to get a 
higher energy retention for a given percentage of zeroes, by thresholding each detail subsignal in a 
different way. 
 
Changing the decomposition level changes the amount of detail in the decomposition.  Thus, at higher 
decomposition levels, higher compression rates can be gained.  However, more energy of the signal is 
vulnerable to loss.  The wavelet divides the energy of an image into an approximation subsignal, and 
detail subsignals.  Wavelets that can compact the majority of energy into the approximation subsignal 
provide the best compression.  This is because a large number of coefficients contained within detailed 
subsignals can be safely set to zero, thus compressing the image.  However, little energy should be lost.  
Wavelets attempt to approximate how an image is changing, thus the best wavelet to use for an image 
would be one that approximates the image well.  However, although this report discusses some relevant 
image properties, there was not time to research or investigate how to find the best wavelet to use for a 
particular image. 
 
The image itself has a dramatic effect on compression.  This is because it is the image�s pixel values that 
determine the size of the coefficients, and hence how much energy is contained within each subsignal.  
Furthermore, it is the changes between pixel values that determine the percentage of energy contained 
within the detail subsignals, and hence the percentage of energy vulnerable to thresholding.  Therefore, 
different images will have different compressibilities. 
 
There are many possible extensions to this project.  These include finding the best thresholding strategy, 
finding the best wavelet for a given image, investigating other wavelet families, the use of wavelet 
packets and image denoising.     
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Appendix A � Matlab Functions 
 
 
Name Description 
calcres Calculates the energy retained and percentage of zeros for 10 global threshold 

values. 
 
e.g  RES = calcres(image,  �wname�,  decomposition_level ) 
 
RES contains 3 columns for threshold value, percentage of zeros and 
percentage energy retained. 
 

calcres2 Calculates the energy retained and percentage of zeros for 10 local thresholds. 
 
e.g  RES = calcres2(image,  �wname�,  decomposition_level ) 
 
RES contains 3 columns for threshold ID (1..10), percentage of zeros and 
percentage energy retained 
 

createMixedImage Creates a matrix of size 256x256. The values flip between 0 and 255, creating 
a chessboard effect.  
 

createPlainImage Creates a matrix of size 256x256 where all the values are set to 255. 
 

getIntensityChanges Returns a matrix of intensity change values. The intensity change for each 
pixel is calculated by summing the magnitude of the difference between a 
pixel and the eight surrounding pixel values.  
 
e.g  CH = getIntensityChanges( IMAGE ) 
 
where IMAGE is the matrix of pixel values.   
 

imageChanges Returns the sum of intensity change for a given image matrix. 
 
e.g  C = imageChanges(IMAGE) 
 
 

ImageEntropy Returns the image entropy value for the image 
 
E.g   He  = imageEntropy(IMAGE) 

 
 
 
Functions Requiring Database Toolbox 
 
 
Name Description 
getwaveletresults Calls calcres for every combination of image and wavelet found in the 

database and level of decomposition 1 to.5. 
 
e.g  getwaveletresults(�results1�) 
 

Getwaveletresults2 Calls calcres2 for every combination of image and wavelet found in the 
database and level of decomposition 1 to.5. 
 
e.g  getwaveletresults2(�results2�) 
 

getTotalChanges Gets the total intensity change for every image in the databse 
 
e.g  getTotalChanges(�results1�) 
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Appendix B � Images Used 
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